СРАВНЕНИЕ СПОСОБОВ ПРЕДВАРИТЕЛЬНОЙ ОЧИСТКИ ВОДЫ НА ТЭС. УЛЬТРАФИЛЬТРАЦИЯ И ОБРАБОТКА В ОСВЕТЛИТЕЛЯХ И МЕХАНИЧЕСКИХ ФИЛЬТРАХ

А.В. Жадан, первый зам. ген. дир. (ЗАО «НПКМедиана-Фильтр»),

Б.А. Смирнов, ст.н.с. (ОАО «ВТИ»), О.В. Смирное, нач. хим. отделения (ТЭЦ-ЭВС ОАО «Северсталь»), В.Н. Виноградов, к.т.н., главный инженер (ЗАО «Ивэнергосервис»),

В.К. Аван, Е.А. Карпычев, асп. (ИГЭУ)

Для большинства тепловых и атомных электрических станций России источником водоснабжения служат открытые водоемы: реки, озера, водохранилища. Их воды содержит грубодисперсные (взвешенные вещества), коллоидные примеси и истинно-растворенные вещества. Оптимальные схемы водоподготовки содержат в своем составе специализированные функциональные узлы. И первым из этих узлов при обработке поверхностных вод является предварительная очистка (предочистка), обеспечивающая удаления из воды взвешенных и коллоидных веществ, её обесцвечивание и частичную дезинфекцию, а также, в частных случаях, обезжелезивание, уменьшение жёсткости, щёлочности и солесодержания воды. В докладе приводятся результаты сравнительных обследований предочисток различного типа водоподготовительных установок (ВПУ). Путём анализа результатов обследований ВПУ ТЭС установлены преимущества и недостатки основных схем предварительной очистки воды.

1. Предварительная очистка воды по технологии ультрафильтрации

Исходная вода, подогретая до температуры от 10 до 25 °С, поступает на самопромывные фильтры ВПУ, где происходит её механическая очистка от взвешенных веществ. После самопромывных фильтров в трубо­провод дозируется коагулянт, и вода поступает в ёмкости для коагуляции и далее - на установку ультрафильтрации для её окончательной очистки от взвешенных веществ, образовавшихся в результате коагуляции, затем в баки осветлённой воды. Осветлённая вода может быть направлена на осмотическое или ионитное обессоливание.

Преимущества схемы (п. 1):

•  компактность оборудования;

•  полная автоматизация;

•  высокая степень очистки от взвешенных веществ, вирусов и бактерий.

Недостатки схемы (п. 1):

  • большой расход сбросных вод в отсутствие систем по их повторному использованию;
  • высокая стоимость замены мембранных элементов;
  • системам ультрафильтрации зачастую требуются установки предварительной подготовки воды;
  • при отказе контроллера системы автоматического управления ручное управление практически невозможно;
  • применение ультрафильтрации на эффективной сисетме водоподготовки рекомендовано при массовой концентрации взвешенных веществ в воде перед нею не более 50 мг/дм 3 . В то же время, на Новочеркасской ГРЭС ОГК-6 установка работала и при концентрации взвешенных веществ до 200 мг/дм 3 . Эта установка была оборудована контуром внутренней рециркуляции с насосом. При повышении концентрации взвешенных веществ в исходной воде до 200 мг/дм3 наблюдалось уменьшение её производительности примерно на 20 %;
  • высока стоимость оборудования водоподготовки, которая, однако, может быть компенсирована за счёт уменьшения стоимости здания ВПУ при новом строительстве;
  • высока чувствительность мембранных систем к наличию в воде антропогенных загрязнений, таких как, нефтепродукты.

Водные промывки системы ультрафильтрации осуществляются осветленной водой, полученной при обработке исходной воды коагулянтом. Чем чаще проводятся водные отмывки, тем больше расход коагулянта на собственные нужды ВПУ. Сточные воды от химически усиленных промывок нуждаются в нейтрализации и дезактивации активного хлора.

Использование эффектов сорбции в сочетании с применением технологии ультрафильтрации возможно при реализации так называемой технологии напорной коагуляции, когда вода, обработанная коагулянтом, сначала подаётся в напорные контактные ёмкости. Такая схема успешно реализована и применяется на Шатурской ГРЭС, причём исключение контактных ёмкостей из схемы коагуляции мгновенно приводило не только к увеличению цветности и мутности фильтрата, но и к уменьшению фильтроциклов модулей ультрафильтрации.

Затраты воды на собственные нужды для данной технологической схемы напрямую зависят от массовой концентрации взвешенных веществ. Увеличение в исходной воде этой концентрации увеличивает количество промывок самопромывных фильтров и модулей ультрафильтрации.

Таким образом, зависимость работы установки от качества исходной воды сужает область эффективного применения данной технологической схемы водоподготовки. Такая схема может использоваться в России для обработки воды таких рек, как Енисей, Ангара (верховье), озер Имандра, Байкал. Малая минерализация вод этих источников уменьшает экономическую эффективность осмотической стадии схемы (п. 1), в связи с чем на ТЭЦ-11 в Усолье-Сибирском установка ультрафильтрации предшествует противоточной ионообменной установке, работающей по технологии Schwebebett . Как известна, данная противоточная технология предъявляет наиболее жёсткие требования к качеству подаваемой на неё воды.

2. Предварительная очистка воды по технологии известкования и коагуляции в осветлителях

Исходная вода, подогретая до температуры 35±1 °С, поступает в осветлитель, работающий по технологии обработки воды известкованием и коагуляцией, далее - в бак известково-коагулированной воды и из него на механические фильтры. Осветлённая вода может быть направлена на ионитное или омотическое обессоливание. Стоит отметить, что современные технологии осветления, разработанные зарубежными специалистами, такие, как Multiflo компании Veolia или Densadeg компании Degremont , обеспечивают достижение стабильных хороших эксплуатационных пока­зателей и при значительно меньших температурах.

Преимущества схемы (п. 2):

  • умягчение и декарбонизация воды на стадии предварительной очистки, уменьшение ионной нагрузки на Na - катионитные фильтры;
  • минимальный расход сбросных вод и возможность их утилизации;
  • отсутствие зависимости принципиального технологического решения от степени загрязненности исходной воды взвешенными веществами;
  • хорошие влагоотдающие свойства шлама, позволяющие при применении фильтр-прессов практически исключить образование жидких отходов на стадии предочистки;
  • эффективное удаление из воды соединений железа и коллоидной кремниевой кислоты.

Недостатки схемы (п. 2):

  • наличие известкового хозяйства, плохо поддающегося автоматизации;
  • эффективность оборудования зависит от качества исходной воды. В качестве исходных рассматриваются воды с большими жёсткостью и щелочностью, для которых наиболее применима технология известкования и коагуляции. По крайней мере, эта технология предочистки рекомендована к использованию при общей щелочности исходной воды более 2 мг-экв/дм3 ;
  • большое количество шлама;
  • нестабильное качество осветлённой воды. Так, например, на Первомайской ТЭЦ ТГК-4 процессы декарбонизации заканчивались за пределами осветлителя, что приводило к образованию отложений карбоната кальция в фильтрующей загрузке механических фильтров;
  • необходимость ступени механической фильтрации для доочистки известково-коагулированной воды;
  • крупные габариты установки и, как следствие, большие объём здания ВПУ и стоимость строительства. Большая металлоёмкость и стоимость отечественных осветлителей.

Таким образом, зависимость работы установки от качества исходной воды сужает область применимости и данной технологической схемы (п. 2). В России она применима для обработки вод, которые имеют увеличенные жёсткость и щёлочность.

Говоря об известковании уместно упомянуть реакторы быстрой декарбонизации. В них осуществляется химическая обработка воды путём добавления извести, а иногда и едкого натра (как, например, на Киевской ТЭЦ-5). При использовании кальцинированной соды удаётся удалить не только временную, но и часть постоянной жёсткости. Известны случаи применения песка в качестве интенсификации процесса, при этом вместо хлопьев шлама на песчинках образуются зёрна карбоната кальция. Они имеют высокую гидравлическую крупность и отличаются низким влагосодержанием. Возможно использование зёрен карбоната кальция в качестве добавки при производстве строительных конструкции. Недостатком такой технологии являются безвозвратные потери песка и, следовательно, необходимость в их регулярном восполнении. При неблагоприятном сочетании кальциевой и магниевой жёсткости шлам, образующийся в результате известкования, получается более аморфным, и его осаждение иногда требует длительного времени или ввода дополнительных реагентов, таких как коагулянты и (или) флокулянты.

Реакторы быстрой декарбонизации уместно использовать при подпитке оборотных циклов водами, характеризующимися высоким солесодержанием наряду с малой цветностью и мутностью.

3. Предварительная очистка воды в осветлителях по технологии коагуляции и последующей ультрафильтрации или механической фильтрации в фильтрах с зернистой загрузкой

Исходная вода, подогретая до температуры 25±1 °С (как отмечено выше, осветлители с горизонтальным движением воды менее чувствительны к изменению температуры и обеспечивают стабильную работу в её более широком диапазоне), поступает в осветлитель, работающий по технологии обработки воды коагулянтами и флокулянтами. В остальном технологическая схема повторяет схему, приведённую в п. 1. Промывочные воды установки ультрафильтрации возвращаются в осветлитель. При налаженном режиме работы осветлителя массовая концентрация взвешенных веществ в коагулированной воде менее 2 мг/дм 3 . Установка ультрафильтрации при данном качестве воды находится в идеальных условиях, реагенты в воду перед нею не дозируются. Подобные схемы часто реализуются на зарубежных водопроводных станциях, в странах, где законодательная база не допускает регулярную обработку воды хлорсодержащими реагентами. В таких проектах основная роль ультрафильтрации сводится не к осветлению воды, а к задержанию вирусов и бактерий.

Преимущества схемы (п. 3)

  • небольшой расход сбросных вод от предочистки и возможность их утилизации;
  • отсутствие зависимости принципиального технологического решения от загрязненности исходной воды взвешенными веществами;
  • сочетание возможности удаления из воды микрочастиц взвешенных и коллоидных веществ с возможностью сорбционного удаления низкомолекулярных органических кислот, полисахаридов, коллоидных соединений кремниевой кислоты;
  • коагуляция наиболее эффективна при подготовке воды перед обратным осмосом;
  • возможность использования как напорных, так и погружных мембран ультрафильтрации;
  • увеличение срока службы ультрафильтрационных элементов и, как следствие, уменьшение эксплуатационных затрат.
  • Недостаток схемы (п. 3)
  • высокая стоимость строительства, как здания, так и технологического оборудования;
  • осложнён выбор флокулянтов, так как не все флокулянты, оптимальные для процесса коагуляции, совместимы с процессом ультрафильтрации (многие высокомолекулярные анионные полимеры склонны к образованию тяжёлых и клейких макрохлопьев, осадок которых практически не вымывается из полых волокон ультрафильтрации. То есть, при подборе флокулянтов и режима коагуляции необходимо обеспечить минимальные остаточные концентрации флокулянта в коагулированной воде).

Дозирование ингибиторов (антискалантов) перед установкой обратного осмоса обусловлено необходимостью стабилизационной обработки воды для предотвращения закрепления отложений на мембранах. Вторичное использование концентрата в технологических схемах водоподготовки затруднено из-за наличия в нём ингибиторов. Иногда концентрат удаётся использовать в технологических схемах ТЭС. Известны схемы, где вместо ингибиторов используют подкисление.

Технологическая схема (п. 3) довольно часто применима в России. Однако практически везде ультрафильтрация с предочисткой в виде дисковых или сетчатых фильтров выходит по частоте использования в проектах на передовые позиции. Основными причинами такой тенденции можно назвать две: практическое отсутствие современных эффективных осветлителей отечественного производства и «удобство» проектирования блочно-модульных мембранных систем водоподготовки. Тем не менее, применимость схемы (п. 3) можно обосновать технико-экономически в сравнении со схемами, представленными в пп. 1, 2 и классическими схемами с предочисткой в осветлителях и ионитным или термическим обессоливанием вод.

4. Предварительная очистка воды путем её прямоточной коагуляции

Исходная вода, нагретая до температуры 28±2 °С, поступает по трубопроводу в механические фильтры. В этот трубопровод перед статическим смесителем, возможно ближе к механическим фильтрам, дозируется пропорционально расходу исходной воды рабочий раствор коагулянта. Доза (массовая концентрация) коагулянта подбирается по условию проведения процесса контактной коагуляции на зёрнах неподвижной фильтрационной загрузки механических фильтров, что обеспечивает максимальное использование её грязеёмкости. Коагулированная вода направляется для дальнейшей обработки в последующие элементы технологической схемы. В ряде случаев лучший эффект коагуляционной обработки воды достигается при вводе коагулянта в точку трубопровода исходной воды, удалённую от механических фильтров. Схему прямоточной коагуляции целесообразно применять при недостаточно нагретой исходной воде, когда процесс гидролиза коагулянта замедлен, и для формирования хорошо задерживаемых хлопьев требуется большее время. В качестве фильтрующей загрузки наиболее оптимально применение нескольких фильтрующих материалов, загруженных послойно, например, гравия, кварцевого песка и гидроантрацита. Фильтры с послойной загрузкой при осветлении коагулированной в осветлителе воды обладают не только большей в 3-5 раз грязеёмкостью, но и обеспечивают превосходное качество фильтрата с содержанием взвешенных веществ не более 0,2 мг/дм3 и мутностью не более 0,2 NTU . Такая вода удовлетворяет по своему качеству требованиям, предъявляемым к воде, подаваемой как на фильтры ионного обмена, так и на установки обратного осмоса.

Преимущества схемы прямоточной коагуляции

  • компактность предочистки;
  • меньшие требования к точности регулирования нагрева исходной воды;
  • уменьшение затрат коагулянта в сравнении с коагуляцией в осветлителях.

Недостатки схемы прямоточной коагуляции

  • увеличенный расход воды на собственные нужды механических фильтров;
  • увеличенное количество механических фильтров (или корпусов механических фильтров);
  • необходимость использования бака и насосов взрыхляющей промывки механических фильтров;
  • худшее, по сравнению с сочетанием коагуляции и механического фильтрования, качество осветлённой воды, особенно с точки зрения задержания бактерий, полисахаридов и низкомолекулярных органических кислот;
  • повторное использование промывных вод требует дополнительного оборудования;
  • прямоточная коагуляция применима при содержании взвешенных веществ в исходной воде не более 30 мг/дм3 (с учётом образующихся в процессе коагуляции). При больших концентрациях этих веществ увеличивается расход воды на собственные нужды механических фильтров и уменьшаются интервалы времени между их взрыхляющими (обратными) промывками.

Прямоточная коагуляция применима для очистки поверхностных вод с небольшой окисляемостью воды, не требующих известкования, и для очистки вод на ВПУ, имеющих малый коэффициент использования установленной производительности. В последнем случае оборудование ВПУ, в том числе, осветлители, большую часть времени простаивает в резерве. Частые пуски затрудняют эксплуатацию осветлителей.

Прямоточная коагуляция воды реализована, например, на Вологодской ТЭЦ в схеме подготовки воды для подпитки теплосети. Примером потенциальной рациональности применения прямоточной коагуляции является Норильская ТЭЦ-2, использующая воду с малой окисляемостью, увеличивающейся заметно, как и её кремнесодержание, лишь в поводок. Таким образом, устройство реагентного узла и небольшого склада коагулянта рекомендуется к применению на данной ТЭЦ. В отсутствие коагуляции на ней происходят нарушение требований ПТЭ к качеству питательной воды и паров на содержание соединений кремния.

При реализации технологии прямоточной коагуляции на некоторых объектах применены фильтры DynaSand. Эти фильтры отличаются непрерывным режимом работы и, соответственно, их общее количество может быть уменьшено, так как не требуется отключение на обратную промывку. По сравнению с традиционными напорными фильтрами это является единственным преимуществом, причём имеют место следующие недостатки:

  • отвод фильтрата и стоков осуществляется безнапорно, что создаёт серьёзные неудобства при проектировании высотной схемы установки;
  • относительно большой расход воды на собственные нужды;
  • более сложная конструкция и условия эксплуатации;
  • более высокая стоимость.

Заключение

В результате обследования ВПУ определены основные технико- экономические различия технологических схем предварительной очистки воды.

В настоящее время технико-экономически предпочтительна предварительная очистка воды с использованием осветлителей, в том числе, и для ВПУ с последующей ультрафильтрацией воды.

Rambler's Top100 Rambler's Top100